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possible to link regulatory networks with 
clustering and trajectory inference, which 
will in turn increase the power of causal 
inference. Follow-up validation of candidate 
regulatory elements using genetic deletions 
or CRISPR interference (CRISPRi) would be 
crucial (Box 1).

Finally, integration with spatial  
methods will enable identification of 
context-specific, functionally relevant 
relationships and how these shape  
cellular phenotypes. Novel computational 
methods offer an opportunity to exploit 
the full potential of single-cell multimodal 
omics sequencing techniques and will 
deepen our understanding of cellular 
identity and responses in both health  
and disease. ❐
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Single-cell biology: beyond the sum of its parts
The field of single-cell rnA sequencing (scrnA-seq) has been paired with genomics, epigenomics, spatial omics, 
proteomics and imaging to achieve multimodal measurements of individual cellular phenotypes and genotypes. 
In its purest form, single-cell multimodal omics involves the simultaneous detection of multiple traits in the same 
cell. More broadly, multimodal omics also encompasses comparative pairing and computational integration of 
measurements made across multiple distinct cells to reconstruct phenotypes. Here I highlight some of the biological 
insights gained from multimodal studies and discuss the challenges and opportunities in this emerging field.

Alexander F. Schier

“Single-cell sequencing” was the 
Method of the Year in 2013. Since 
then, the impact of scRNA-seq 

has only grown, largely because throughput 
has increased dramatically through droplet 
or combinatorial indexing approaches, 
and application has been democratized 
through the development of off-the-shelf 
equipment, reagents and analysis tools. A 
primary contribution of these technologies 
has been the identification of previously 
uncharacterized cell types and cell states 
in heterogeneous samples. For example, in 
the well-studied human lung, an ionocyte-
like cell type was discovered that expresses 

cystic fibrosis transmembrane conductance 
regulator and might underlie cystic 
fibrosis1,2. Even in the extensively analyzed 
early zebrafish embryo, a novel cell state was 
discovered that has hallmarks of apoptosis 
and cellular stress but whose origin and fate 
are mysterious3. Progress in scRNA-seq has 
been particularly remarkable in the nervous 
and immune systems, with the definition of 
dozens or even hundreds of transcriptionally 
distinct cell types.

As exemplified by this year’s Method of 
the Year, “Single-cell multimodal omics,” 
the field of single-cell genomics is moving 
from scRNA-seq snapshots to multimodal 

measurements of cellular phenotypes and 
genotypes. Here I discuss recent examples 
of biological insights gained by single-cell 
multimodal omics and speculate what 
the future might hold. For more detailed 
coverage of the different subfields, the reader 
is referred to excellent recent reviews4–10.

single-cell trajectories
scRNA-seq snapshots are powerful 
indicators of cellular diversity, but they tell 
us little about the history or biography of a 
cell. What was a cell’s previous molecular 
trajectory to arrive at the current state? 
What was the division pattern that defines 
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its lineage relationship with other cells? 
Not only are these questions important for 
developmental biologists, but they are also 
defining features of diseases such as cancer.

Computational methods have helped 
to reconstruct the molecular trajectories 
of cells11,12. These maps are multimodal in 
the sense that they provide both snapshots 
and the potential transcriptional history 
of a cell. Current trajectories reach from 
simple differentiation paths to complex 
trees, networks or state manifolds. For 
example, transcriptional trajectories of 
vertebrate embryogenesis have been 
reconstructed from the pluripotent state to 
organ formation13–17. These studies revealed 
unexpected cellular plasticity at decision 
branchpoints, identified convergent paths 
to create specific cell types and phenotyped 
developmental mutants at whole-
transcriptome scale.

Despite the impressive progress in 
reconstructing developmental trajectories, 
it is important to note that these trajectories 
are only models of cell type specification, 
as it is not yet feasible to measure the same 
cell at the whole-transcriptome level more 
than once. For example, the trajectories 
often portray differentiation as a continuous 
path, but it is unclear whether a single cell’s 
gene-expression path is indeed continuous 
or whether cells jump from state to state. 
We also do not know which representation 
most accurately reflects the phenotypic 
landscape during development13–18. Does 
the Waddingtonian view of valleys and hills 
hold true, or do we need to consider other 
landscapes? Is “landscapes” even the proper 
analogy for multidimensional phenotypic 
complexity? Addressing these questions 
requires the multiplex in vivo measuring of 
dozens of transcripts over time and at single-
cell resolution—a Holy Grail technology that 
is not yet available.

Another limitation of current trajectory 
reconstructions is the necessary focus on 
transcription. However, most developmental 
decisions are initiated by the post-
transcriptional regulation of signaling 
pathways, such as the phosphorylation or 
proteolysis of transcriptional regulators. 
Transcriptomes can therefore only capture 
cell fate decisions after they have been 
initiated. Hence, many reconstructed 
bifurcation points are temporally delayed 
with respect to the first step of cell type 
diversification.

single-cell lineages
Molecular trajectories do not necessarily 
reflect the lineage relationships of cells. The 
recent mapping of single-cell transcriptomes 
onto the Caenorhabditis elegans lineage 
tree offers important lessons for the 

reconstruction and multimodal comparison 
of developmental trajectories and lineages19. 
Notably, there is limited correlation between 
transcriptome and lineage as cells become 
highly specialized. Moreover, there are 
many paths cells can take to converge on 
the same terminal transcriptomic state. 
These results indicate that the relationship 
between lineage and molecular trajectory 
can be complex, and that it would be 
naive to assume that an identical cascade 
of transcriptional regulators specifies a 
particular cell type independent of its lineage 
history. Indeed, a recent study identified a 
transcription factor, UNC-130, that acts as 
a lineage selector for one specific sublineage 
to generate a particular glial cell type20. The 
same cell type is also generated by a different 
sublineage that develops independently 
of UNC-130. Hence, different lineages 
and different trajectories can result in the 
generation of the same terminal cell type.

To track the lineage relationships 
between cells at global scales, genomic 
barcoding methods have been developed4,5. 
Akin to the phylogenetic reconstruction 
of evolutionary relationships based on 
mutations, these clonal or lineage-tracing 
methods introduce changes in the genome 
as cells divide. Inheritance of shared 
genomic changes can then reveal the 
ancestral relationships between cells. Using 
naturally accumulating genomic changes, 
lineage trees can even be constructed from 
human samples, particularly in tumors with 
high mutation rates and in the immune 
system by analyzing the T cell receptor 
repertoire21–23.

Genomic lineage tracing, in combination 
with scRNA-seq or other modalities, 
has provided interesting insights into 
the dynamics of cell specification. For 
example, it identified striking differences 
between steady-state and regenerative 
hematopoiesis24, revealed fine-grained clonal 
relationships in the hypothalamus25, showed 
that only a handful of pre-gastrula cells give 
rise to the large majority of differentiated 
cells of a given organ4 and identified a 
new lineage of myeloid-like cells5. In 
the future, these technologies have the 
potential to address at global scales the role 
of lineage history in determining the final 
cellular phenotype. Studies in Drosophila 
melanogaster have shown remarkable 
correlation between lineage and cell type, 
transmitter phenotype, morphology and 
connectivity of neurons26,27. In vertebrates, 
however, the fundamental rules are often 
unknown, and more stochastic and 
regulative processes might be at play, rather 
than determinate lineages28,29. Such scenarios 
raise the question of what kind of lineage 
motifs are used to generate organs of the 

correct size and cell type composition, 
and could lead to a field of developmental 
statistics that compares the distribution 
of lineage and trajectory motifs between 
individuals or species.

Despite the progress in genomic lineage 
tracing, it is important to note that the 
current barcode-derived lineage trees 
capture only a small part of the ancestral 
relationships of all cells—they are trees that 
lack most branches and leaves, because 
current barcode diversity does not uniquely 
define each cell, most cells are not recovered 
upon dissociation or sequencing, and 
barcode editing is temporally limited. It is 
also not clear when and in what progenitor 
type a particular edit was introduced, and 
instances of apoptosis are not captured.

Clonal resampling combined with 
cumulative barcoding can address some of 
these issues. In one example, a population 
of fibroblast cells was genetically barcoded 
during reprogramming to endoderm. 
Single-cell barcodes and transcriptomes 
were sampled at different stages of 
reprogramming, and cells were then mapped 
onto the RNA trajectory manifold and 
clonal coupling was analyzed30. This analysis 
identified dead-end paths of reprogramming 
and revealed a putative methyltransferase 
associated with the successful 
reprogramming trajectory. Resampling 
analyses can reveal the potential paths that 
cells can take during differentiation and 
reprogramming. However, this approach is 
not easily applicable in vivo. Therefore, most 
in vivo systems will require barcode editing 
that is targeted to specific cells at specific 
times, and will combine genomic lineage 
tracing with imaging approaches.

single cells in space
scRNA-seq experiments rest on the 
dissociation of tissues and result in the loss 
of spatial and morphological information. 
To reconstruct the spatial origin of newly 
characterized cells, initial approaches 
have used marker or reporter genes. In 
some cases, the computational pairing of 
scRNA-seq data with the spatial expression 
of landmark genes allows the genome-
wide reconstruction of gene-expression 
domains3,31. More recently, barcoded arrays 
or multiplex in situ hybridization–imaging 
approaches have mapped the expression of 
dozens or even thousands of genes at (sub)
cellular resolution32,33.

In combination with other cellular 
phenotypes such as lineage34, morphology 
or physiology, RNA localization studies 
have provided insights into cellular diversity 
and have raised the overarching question 
how a cell’s transcriptome, location, 
morphology and physiology relate to each 
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other. Particularly in the nervous system, the 
relationships between different modalities 
are very complex. Although there is a 
general overlap of transcriptomic profiles 
with electrophysiological and morphological 
properties8,9,35,36, there are also very clear 
examples in which morphological diversity 
is not reflected in the transcriptome. 
For example, mature Drosophila 
olfactory projection neurons can have 
indistinguishable transcriptomic profiles but 
different projection patterns37. Strikingly, 
these morphological changes are still guided 
by transcriptomic differences during the 
differentiation of these neurons but are no 
longer present upon maturation. Hence, 
correlations between single-cell modalities 
can be stage dependent.

The relationships between function 
and transcriptome are also complex and 
controversial. Two recent studies used 
scRNA-seq, multiplex in situ hybridization, 
axonal projection mapping and neuronal 
activity measurement to classify dozens of 
cell types and their locations in the mouse 
hypothalamus38,39. Surprisingly, specific 
neuronal populations exhibited behavior-
specific activation in one38 but not the other 
study39. The cause for these discrepancies is 
not known, but the studies point to complex 
relationships between the molecular identity 
and functional roles of individual neurons8,9.

rNa meets dNa
Efforts to sequence both the genome and 
RNA from the same cell are still in their 
infancy, but targeted sequencing of genomic 
regions of interest in combination with 
scRNA-seq allows insights into genotype–
phenotype connections. Fruitful applications 
involve the correlation of mutations and 
transcriptomes in CRISPR screens or during 
cancer heterogeneity. For example, distinct 
AML subtypes defined by scRNA-seq 
correspond to different genetic alterations40. 
These multimodal measurements will also 
inform attempts to target cancerous cells by 
gene-editing.

Transcription is driven by cis-regulatory 
DNA elements. To understand gene 
regulation, one would therefore want to 
define enhancer activity, chromatin state, 
chromosomal conformation and RNA 
expression. By miniaturizing approaches 
such as methylome sequencing, ATAC-
seq and ChIP-seq, multimodal datasets 
have been generated that combine RNA 
with genomic features. For example, 
the correlation of transcriptome with 
chromatin accessibility data helps link cis-
regulatory regions to genes41. In another 
recent example, the combination of 
methylome, nuclease-sensitivity and mRNA 
data revealed that during early mouse 

embryogenesis the exit from pluripotency 
coincides with the formation of a repressive 
chromatin landscape42. Mesoderm and 
endoderm progenitors display cell-type- 
and gene-specific increases in chromatin 
accessibility and decreases in enhancer DNA 
methylation. In contrast, the epigenome 
of ectodermal cells is already established 
before cell type specification, consistent 
with the classic view that ectodermal 
commitment is the default mode of germ 
layer formation. In another study, combined 
single-cell methylome and RNA sequencing 
suggested that aging muscle stem cells do 
not have a methylation clock but instead 
show uncoordinated methylation changes 
at promoters and increased transcriptional 
variability43. These studies highlight the 
potential of multimodal analyses to compare 
and contrast different phenotypic traits 
within single cells.

Challenges and opportunities
Single-cell multimodal omics approaches 
have become a powerful tool to phenotype 
cells, but many challenges remain. First, 
we need to capture the full complement of 
cellular traits. For example, one major void 
is the lack of comprehensive single-cell 
protein or ribosome profiling approaches, 
because current antibody-based methods 
are limited to the co-detection of a few 
dozen proteins44–46. We also need to be able 
to reconstruct and record the full history of 
cells. For example, it is currently impossible 
to faithfully record or reconstruct the 
molecular trajectories and lineages that 
result in the hundreds of cell types in the 
vertebrate brain. With such advances, the 
biographies of cells would no longer be 
mostly empty books.

Multimodal analyses also amplify the 
current struggle to define “cell type”8,9. 
Hierarchical definitions based on variably 
expressed genes provide some criteria to 
define the relationship between cells, but 
multimodal analysis raises the question how 
to weigh different traits. For example, are 
epithelial cells in the gut and skin primarily 
epithelial cells or primarily gut or skin cells? 
This issue is further amplified in cellular 
comparisons between disease states or 
through evolution47–49. Cell type definitions 
are likely to become context and modality 
dependent and will be guided by specific 
biological questions50,51.

Although single-cell approaches have led 
to important discoveries in specific systems, 
detractors might argue that the main 
biological findings have ‘only’ resulted in 
the extension of established paradigms into 
more global rules. They might also argue 
that the large datasets themselves have not 
revealed any fundamental new principles. 

However, three recent examples suggest that 
multimodal analyses can reveal unexpected 
biology. First, large-scale in situ profiling 
of nascent transcripts revealed global 
transcript oscillations in mouse embryonic 
stem cells52. Oscillations follow a two-hour 
period and are not synchronized between 
cells, but it remains unclear how they are 
generated. Second, global analysis of apical 
versus basal localization of mRNAs in the 
gut epithelium revealed that more than 
600 mRNAs were polarized53. Surprisingly, 
however, local protein abundance did not 
correlate with RNA localization. Instead, a 
significantly higher abundance of ribosomal 
proteins was found at the apical side, leading 
to higher local translation. Thus, the global 
subcellular analysis of proteins and RNAs 
revealed system properties that had not been 
recognized by smaller-scale approaches. 
Third, multimodal single-cell imaging 
reconstructed the emergence of a motor 
circuit in zebrafish embryos54. Combined 
tracking of neuron lineages, migration, 
marker gene expression and activity revealed 
that early-born motor neurons guide local 
circuit activity and that neighboring neurons 
from the same lineage share functional 
properties. Thus, multimodal single-
cell imaging can discover how neuronal 
ensembles are assembled and activated. 
These three examples show the promise 
of multimodal studies in uncovering new 
biology and allow us to hope for many more 
discoveries achieved through single-cell 
multimodal omics. ❐
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